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The characteristics of shallow-water waves in a linear shear flow are studied, and the 
relationship between waves and unstable modes is examined. Numerical integration 
of the linear shallow-water equations shows that over-reflection occurs when a wave 
packet is incident a t  the turning surface. This phenomenon can be explained by the 
conservation of momentum as discussed by Acheson (1976). The unstable modes of 
linear shear flow in a shallow water found by Satomura (1981) are described in terms 
of the properties of wave propagation as proposed by Lindzen and others. Ripas’s 
(1983) theorem, which is the sufficient condition for stability of flows in shallow 
water, is also related to the wave geometry. The Orr mechanism, which is proposed 
by Lindzen (1988) as the primary mechanism of wave amplification, cannot explain 
the over-reflection of shallow-water waves. The amplification of these waves occurs 
in the opposite sense to that of Orr’s solution. 

1. Introduction 
Since the experiments by Reynolds and theoretical studies by Rayleigh a t  the end 

of 19th century, the stability of shear flows has been investigated intensely. In  
particular, the linear stability of two-dimensional parallel shear flow has interested 
workers in fluid dynamics, because of its mathematical simplicity and usefulness. 
The linear stability of a shear flow is studied as an eigenvalue problem. If we get a t  
least one eigenvalue (phase speed c) whose imaginary part is positive, the flow field 
is unstable. Moreover, the structure of the eigenfunction that has the maximum 
growth rate is believed to appear in the transition from the unstable basic state to 
another state. 

From the mathematical solution of the eigenvalue problem, however, it is not easy 
to obtain an intuitive image of the reason why the flow field should be unstable 
(Lindzen 1988). It is difficult to  determine the stability of the flow a t  first sight 
without using mathematical tools. We have to solve the eigenvalue problem 
repeatedly for each flow configuration. Even after one obtains an unstable mode, all 
one can show is that the unstable mode has a consistent structure for its growth. One 
cannot obtain any physical answer as to why the disturbances should be amplified. 
Moreover, the stability often varies dramatically with a slight change of the basic 
state or boundary conditions. Sometimes, the results are even opposed to  intuition. 
For example, a linear shear flow of an unstratified, incompressible fluid has no 
unstable mode (Orr 1907). However, for the stratified case, even a linear shear flow 
can be unstable (Howard & Maslowe 1973). This is opposite to the belief that 
stratification stabilizes fluids. A linear shear flow can also be unstable in shallow 
water (Satomura 1981). Solving eigenvalue problems does not explain the reason for 
this variety of stability of linear shear flows. 
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In some cases, it is possible to derive conditions for the stability of general flow 
configuration. These are called integral thcorcms (Fjortoft 1950), since they are 
obtained from the equations integratcd over the fluid. However, these theorems, 
similar to the solutions of eigenvalue problems, do not give us an intuitive image of 
instability. For example, the expression of Raylcigh’s (1880) inflexion point theorem 
does not directly answer the question of why an inflexion point is necessary for 
instability. t 

In order to improve the physical understanding of shear instability, unstable 
situations have been described by properties of wave propagation in shear flows. The 
merit of this description is that one can describe the characteristics of flows locally 
and intuitively because waves are local solutions. It is then possible to consider the 
characteristics of flows and boundary conditions separately, which should be handled 
a t  the same moment in the eigenvalue problems. Moreover, one can discuss the 
stability of different systems in terms of the same concept by describing the 
instability using the general term ‘wave ’. 

The remarkable phenomenon in describing instability of shear flows with properties 
of wave propagation is over-reflection. The occurrence of over-reflection was 
discovered by Miles (1957) for sound waves, and the situations where it occurs are 
summarized by Acheson (1976). He explained over-reflection by the conservation of 
wave action. However, the relationship between the occurrence of over-reflection and 
the existence of unstable modes is ambiguous in the understanding of people a t  that 
time, including Acheson. In fact, Acheson (1976) computed steady over-reflection 
solutions and unstable modes of the vortex sheet model. In  his over-reflection 
solution, both sides of the vortex sheet are wave regions. The unstable modes which 
can be interpreted by such over-reflection solutions are the modes of the case where 
a reflecting boundary is located behind the incident wave region. In order to describe 
unstable modes of the vortex sheet model, over-reflection of ‘trapped ’ Rossby waves 
in the neighbourhood of the sheet should be considered (e.g. Lindzen & Rosenthal 
1983). Therefore, figures 1 and 2 of Acheson (1976) are insufficient. 

It was Lindzen and his colleagues who clearly connected over-reflection solutions 
with unstable modes. The combinations of waves and shear instability they 
considered are internal gravity waves and stratified shear instability (Rosenthal & 
Lindzen 1983a, b ;  Lindzen & Rosenthal 1983; Lindzen & Barker 1985), Rossby 
waves and barotropic instability (Lindzen & Tung 1978), Rossby waves and 
instability of viscous Poiseuille flow (Lindzen & Rambaldi 1986), and Rossby waves 
and baroclinic instability (Lindzen, Farrel & Tung 1980). They summarized the 
relationship between the unstable modes and the propagation properties of these 
waves as follows (Lindzen 1988) : the circumstances where over-reflection occurs are 
described by the structure of the common properties of wave propagation, which is 
called the wave geometry ; the necessary conditions for instability provide the wave 
geometry for over-reflection ; in the solutions of over-reflection, the one that satisfies 
the ‘quantization’ becomes an unstable mode. I ts  growth rate can be evaluated with 
a ‘ laser formula ’. 

Through the investigations of the relationship between over-reflection and 
unstable modes, Lindzen and his colleagues succeeded in describing a variety of 
linearly unstable situations in terms of the same concept. However, in the situations 

t Taylor (1915) derived the inflexion point theorem from the momentum conservation law. 
However, many modern textbooks (e.g. Drazin & Reid 1981; Pedlosky 1987) do not follow his 
derivation. They describe only mathematical proofs of the integral theorems and give almost no 
physical interpretation to  these results. 
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they considered, it is only the ‘vorticity waves’ that are related to the unstable 
modes. In this paper, we investigate an unstable shallow-water layer, in which 
‘divergent waves ’ play an important role. The possibility of whether unstable modes 
can be interpreted as the properties of shallow-water waves will be studied in the 
same way as the ‘vorticity waves’. 

Shear instability in shallow water has been investigated by Satomura (1981) for 
the case of a linear shear flow with no rotation. The stability of shear flows in shallow 
water on the ,&plane was considered by Ripa (1983) and Hayashi & Young (1987). 
The stability of a compressible fluid, whose equations are the same as those of the 
shallow-water case, was studied by Narayan, Goldreich & Goodman (1987). Here, in 
order to have only pure divergent shallow-water waves, we consider a linear shear 
flow with no rotation, in which the ‘vorticity waves’, i.e. Rossby waves do not 
appear. 

In $2, the linearized equations of the shallow-water system are described. In $3, 
the behaviour of shallow-water wave packets in a linear shear flow are investigated 
as an initial-value problem. In $4, the relationship between unstable modes obtained 
by Satomura (1981) and steady solutions of over-reflection is examined according to 
the method of Lindzen. In $5, Ripa’s (1983) theorem, the sufficient condition for 
stability in shallow water, is interpreted for the case of Satomura (1981) with the 
property of wave propagation. 

2. Linearized shallow-water system 
Before considering the relationship between the shear instability and the properties 

of wave propagation in a shallow-water system, we shall list here the basic state and 
the linearized equations of the system. We start from the non-dimensional shallow- 
water equations with no rotation : 

au au au 1 ah -+u-+v -=--- 

av av av 1 ah 

at ax ay Fr2ax’ 

at +++ ax ’- ay = Fr2ay’ 

= 0. 
ah a(hu) a(hv) -+-+- 

- 

at ax a y  (3) 

Fr is the Froude Number expressed as Fr2 E u2,/gH, where H is the mean depth, U, 
is a characteristic velocity of the flow, and g is the acceleration due to gravity. 
Conservation of the potential vorticity gives 

The basic state considered here is a linear shear flow, u = U(y) = y, v = 0, h = H (  = 

constant), in which a horizontal scale L is selected as L-’ = (l/U,)(dU/dy), where 
dUldy is the shear of the basic flow. The linear equations of disturbances u‘, v‘, h‘ for 
this basic state are 

au‘ au! 1 ah‘ -+U-++’ = 
at ax Fr2 ax ’ 
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ah‘ ah‘ ad dv‘ 
-+u-+-+-=0. 
at ax ax ay 

The linearized potential vorticity conservation is 

Eliminating u’, v’ from (5)-(7), we obtain an equation for h‘, 

Since the flow is independent of x, we use the Fourier transform in the x-direction. 
The equations corresponding to (5)-( 8) become 

Since the coefficients are independent of t ,  solutions of the form eik(x-ct) can be 
obtained from the following equation corresponding to (9) : 

+k2{Fr2(U-c)2- I}&’  = 0, 
d2k 2 di ’  
dy2 U - ~ d y  

where h’ = i’(y) eik(s-et). In  the following sections, we shall consider the monotonic 
waves in the x-direction (i.e. k = constant). 

3. Over-reflection of wave packets 
3.1. Properties of wave propagation : the WKBJ approximation 

We now consider the behaviour of wave packets in a linear shear flow of the shallow- 
water system described by (5)-(7). Let us begin with a description utilizing the 
standard WKBJ approximation method (Whitham 1974). We assume the following 
form of a wave packet for the surface displacement, h‘ : 

00 

h‘ = C enAn(x, y, t )  exp 
n-0 

where E is a small parameter, k and 1 are local wavenumbers in the x- and y-directions, 
and w is a local frequency. Substituting (15) into (9), we get the local dispersion 
relation from the equation of the lowest order in e, 

1 
w = yk+_-(k2+Z2)i. 

Fr 
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FIGURE 1 .  Schematic picture of the properties of wave propagation 

The properties of wave propagation obtained from the local dispersion relation 
(17) are illustrated in figure 1 .  The position of turning surfaces, y = yt, where 1 = 0, 
is expressed as 

where yc = w/k  is the position of the critical level. The region near the critical level 
sandwiched between two turning surfaces is evanescent, and both regions outside 
that are wavy. The width of the evanescent region is 21Fr. 

The wave geometry shown in figure 1 satisfies the geometry for the occurrence of 
over-reflection summarized by Lindzen (1988) : the critical level exists a t  y = yc; 
there is another wave region (wave sink) on the opposite side of the incident wave 
region with respect to  the critical level ; the waves can reach the critical level because 
it is in an evanescent region. 

The packet can reach the turning surface in a finite time, though the group velocity 
of a packet vanishes as it approaches there. However, in the framework of the WKBJ 
approximation, we cannot predict the packets behaviour around the turning surface, 
because i t  is not appropriate there. 

3.2. Initial-value problem over-rejlection of wave packets 
Since we cannot predict the behaviour of wave packets after reaching the turning 
surface, we carry out the time integration of the linear equations (lo), (12) and (13) 
(see Appendix A). The initial value is the following Gaussian-type wave packet 
placed a t  y = yo which is far from the critical level: 

h’ = exp[ - ( ~ ) ~ + i l y ] ,  

h‘, 
1 u’ = - 

Fr2(y  - c )  

q’ = 0, (21) 

where 1 = k(Fr2(c- yo)2 - l);, c = w / k  is a phase speed and a is an e-folding width of 
the packet. The results of integrations with three values of Fr lk  are shown in figure 
2. The wave packets reach the turning surfaces as expected from the WKBJ 
approximation. However, the behaviour after that varies with k lFr .  At the turning 
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FIGURE 2 ( a ,  b) .  For caption see facing page. 

surface, the wave packets try to penetrate the evanescent region. The depth of 
penetration is proportional to l/k. When the width of the evanescent region 2/Fr is 
greater than this depth, the packets can hardly tunnel through this region, which 
results in normal reflection (figure 2a) .  When the width is less, on the other hand, the 
packets can easily tunnel through the evanescent region, and the incident wave 
packets are divided into reflected and transmitted packets (figure 2 b ,  c ) .  Note that 
over-reflection occurs in this case. The amplitudes of the reflected wave packets 
become larger than those of incident ones. 

3.3 Description of over-re$ection in terms of disturbance momentum 

Over-reflection can be described using the conservation of momentum in the x- 
direction. We define a disturbance momentum after Hayashi & Young (1987). 
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- 50 
Time = 0 

FIQURE 2. Over-reflection of shallow-water wave packets. Time series of surface displacement are 
plotted. The parameters of the initial packets are yo = -75, a = 7.5, w = 0. The shaded areas 
indicate the evanescent region. (a )  Fr = 0.1, k = 1.0; ( b )  Fr = 1, k = 0.1; (c) Fr = 10, k = 0.01. 

Upon adding ( 1 )  x h and (3) X U  and averaging in the x-direction, we get the 
momentum conservation equation, 

where 0 denotes a value averaged over x. Integrating (22) over the whole domain 
with respect to y, we get the conservation equation of total momentum, 

We split each physical quantity into the basic state quantity, the disturbance 
quantity of the first order ( )' and that of a higher order ( )(') which is induced by the 
first-order quantities : 

Substituting these equations into (23), we have 
u = ~ + u ' + u ( ~ ) ,  v = v ' + d 2 ) ,  h = Hfh '+h ' , ) .  (24) 

where 

= 0, dM, 
dt 

M ,  = h'u'dy. J 
M ,  is the difference of total momentum between the states where a disturbance exists 
and where one does not. M ,  is referred to as the disturbance momentum. Equation 
(25) states that M ,  is a conserved quantity. 
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FIGURE 3. Schematic picture of over-reflection 

Integrat,ing (5) x h'+ ( 7 )  x u' with respect to y, we obtain an equation for M,, 

Now, let us consider only the disturbances whose potential vorticity is initially zero. 
This limitation excludes vorticity waves but retains surface gravity waves. In this 
case, since we find from (8) that  q' = 0 at any moment, we have 

(30)  

(31)  

Since we can choose M ,  = 0 at t = 0 without losing generality, we can express the 
disturbance momentum simply by M,, that  is, 

M ,  = h'u'dy. (32)  s 
When the WKBJ approximation is applicable, (32)  can be rewritten as 

1 
(33) 

When the disturbance is in the form of wave packets. the disturbance momentum 
(32)  can be expressed in terms of integration over each wave packet: 

M ,  =dd1+ad2+ .... &,i = m d y .  (34) 
ithpacket 

Mdi will be referred to as the disturbance momentum associated with the ith wave 
packet. The sum of Mdt is conserved. 

In  this situation, schematically illustrated in figure 3 ( u ) ,  the sign of iQd can be 
determined easily from (33) ,  when the packet considered is far from the turning 
surface. The sign ofM, of a wave packet in the region y-c > 0 is negative, while that 
in the region y - c < 0 is positive. 

Now, let us consider the evolution of the incident wave packet shown in figure 3 ( b ) .  
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FIGURE 4. An example of a dispersed reflected wave. The parameters are the same as those of 
figure 2 ( b )  except for the initial packet width a = 2.5. 

The sign of Md of the incident wave packet is positive. The sign of Md of the 
transmitted wave packet is negative as illustrated in figure 3 ( c ) .  Because the sum 
of the disturbance momentum of wave packets must be conserved, Md of the reflected 
wave packet must be larger than that of the incident wave packet. This is the over- 
reflection. 

We have argued that over-reflection of the shallow water waves is the phenomenon 
by which the incident waves give disturbance momentum of opposite sign to the 
transmitted wave, resulting in an increase of the disturbance momentum of the 
reflected wave. This view of over-reflection is the same as the scenario described by 
Acheson (1976). However, his argument is restricted within the framework of the 
WKBJ approximation. He did not calculate the evolution of a wave packet. 

Acheson’s description utilizes a second-order change of the mean flow d2),  while 
(32) does not. Thus i t  may seem that the details of the mechanism here are different 
from that of Acheson. However, the essence of the description of over-reflection is the 
sign of the conserved quantity of the system, not the existence of d2).  When the 
conserved quantity of the waves in the incident and reflected region has an opposite 
sign to that of the waves in the transmission region, we can expect the occurrence of 
over-reflection because the total value of the conserved quantity does not change 
before and after incidence. This statement is valid regardless of the kinds of 
conserved quantity and their description. u(’) is the conserved quantity in the case 
of Acheson (1976), while md = h‘u’ is the conserved quantity in the case of the 
shallow water presented here (see (32)). 

Acheson (1976) used action to explain the mechanism of over-reflection while we 
used disturbance momentum in the x-direction. This is because md can be defined 
from the ordinary Eulerian form of the equations of motion, while, strictly speaking, 
action d should be defined from the Lagrangian of the system (Whitham 1974; 
Salmon 1988). So long as the WKBJ approximation is valid, md coincides with kd. 
However, in the general situation, md does not coincide with k d ,  although the 
integrals of them over the whole domain are equal. 

- 
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FIQURE 5.  Multiple over-reflection of a shallow-water wave. The parameters are the same as 
those of figure 2 (b ) .  

The results presented in figure 2 show that the wave geometry for over-reflection 
summarized by Lindzen (1  988) also predicted over-reflection of shallow-water waves. 
The meaning of another wave region (wave flux sink) here is the region which allows 
the existence of waves with n/i, of the opposite sign. There must be such a region, 
since we have to  satisfy the conservation law of momentum. In the shallow-water 
system considered, an alternative view of the wave geometry for over-reflection is 
that waves with the same phase speed but with the opposite signed Md can co-exist. 

It is worth noting that over-reflection is not always observed as described by 
Acheson (1976) (figure 4). This is because a wave packet is actually composed of a 
band of frequencies. When a wave packet is sufficiently monotonic, over-reflection 
occurs as described by Acheson. The amplitude of a reflected wavc is larger than that 
of an incident one. However, when the frequencies of a packet are widely spread, 
dispersion of the reflected wave occurs because of the difference of turning surfaces 
corresponding to each frequency.The amplitude of the reflected wave may not be 
large, though Md of the reflected wave as a whole is considerably increased. Note that 
the dispersion of the transmitted wave in figurc 4 is small, because the dispcrsion of 
the incident side cancels out the dispersion caused by that of the transmittcd side. 
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3.4. Over-rejection and shear instability 
I n  terms of the over-reflection of shallow-water wave packets, we can illustrate the 
instability as follows. Figure 5 shows the numerical solutions of the time evolution 
of a wave packet when a wall exists behind the incident wave region. The wave 
packet which is over-reflected a t  the critical level is reflected again a t  the wall, and 
then returns to the critical level, resulting in further over-reflection. Instability of a 
mode is a phenomenon in which the amplitude of the disturbance increased by 
repeating this process. 

It is also possible to say that instability is caused by the interaction of two 
disturbances which have opposite-signed &d. The amplitude of a disturbance which 
has, say, positive Md can increase by throwing away negative Ma to the other 
disturbance. This is the description of instability presented by Hayashi & Young 
(1987). 
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4. Steady solutions of over-reflection and unstable modes in shallow water 
4.1. Steady solutions of over-reflection 

I n  this section, we will consider the relationship between unstable modes and over- 
reflection solutions in shallow-water following the procedure of Lindzen and his 
colleagues. 

We have obtained the steady over-reflection solutions in shallow water after 
Satomura (1981) (see Appendix B). These solutions coincide with the solutions of 
sonic waves obtained by Narayan et al. (1987). Here, we show a detailed picture from 
the viewpoint of the relationship between over-reflection solutions and unstable 
modes. Equation (14) has been solved under the radiation condition in the 
transmitted wave region. Figure 6 shows an example with parameters Fr = 7.0 and 
k = 4.0. The important point in figure 6 is that the amplitude of the incident wave 
decreases as it approaches the critical level and its wave crests are rotated to  be 
vertical. The amplitudes of the reflected and transmitted waves increase as they 
depart from the critical level and their wave crests are rotated to  be horizontal. This 
tendency is opposite to that of the Orr mechanism (Lindzen 1988), which is the 
evolution of a disturbance produced by the vorticity in a shear flow. 

Figure 7 shows the reflection and transmission factors evaluated using the 
asymptotic solutions of (14) a t  a point far from the critical level. The asymptotic 
solutions far from the critical level are 

where g = ky.  Since the solutions of the scattering problem can be expressed a t  a 
point far from the critical level as 

h"'-Ak- as g+m, (36) 
h"' - Bh"++Ch"l- as %-+-a, (37) 

we define the reflection and transmission factors R and T in terms of the coefficients 
A ,  B,  C as 

Actually, we evaluated the coefficients A ,  B,  C a t  a distance of two wavelengths away 
from the turning surface where the WKBJ approximation is sufficiently valid. 
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FIGURE 6. ( a )  il steady solution of over-reflection in shallow water (Fr  = 7.0, k = 4.0). Surface 
displacement h’ is shown. ( b )  Incident wave. (c) Reflected wave. -, Re (h’ ) ;  ---, Im (h’).  
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Reflection factor ( R )  and transmission factor (T) of shallow-water waves. 

As is shown in figure 7 ,  in the scattering problem of shallow-water waves in a linear 
shear, over-reflection always occurs for all the parameters. However, the reflection 
factor is significantly greater than unity only when klFr 5 1. This corresponds to the 
results of over-reflection of wave packets presented in $3.2 (figure 2). 

Let us describe over-reflection in terms of momentum flux, after Lindzen & Tung 
(1978). Averaging h' x (5) +u' x (7)  in the z-direction, 

Since q" vanishes by the use of the conservation of potential vorticity, (39) is 

am, - a ( H m )  

at a Y  . 

where md = h". Since we consider a steady case, (40) becomes 

= 0. 
a(Hm) 

a Y  
The momentum flux, defined as H n ,  is constant. Note that there is no momentum 
flux jump a t  the critical level in this steady solution (see Appendix B),  which is 
different from the case of vorticity waves studied by Lindzen and his colleagues (for 
example, Lindzen & Tung 1978). By the application of the WKBJ approximation, 
H U "  and md a t  the point far from the critical level are expressed as 

(42 ) 
~ 

Hu'v' N cgy m,, 

where cgy = ( l / F r 2 )  (Z/w)  is the group velocity in the y-direction. Since cgy > 0 and 
md < 0 for a transmitted wave, H a  is negative. For an incident wave, since cgy >o 
and md > 0, H a  is positive. For a reflected wave, since cgy < 0 and m, > 0, Hu'v' 
is negative. Because H n m u s t  be constant overall, the amplitude of the reflected 
wave becomes larger than that of the incident wave (figure 8). This is referred to as 
over-reflection. 
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FIGURE 8. The description of steady over-reflection solutions with momentum flux. 

FIQURE 9. Basic flow configurations: (a) case I of Satomura (1981); (b) case I1 of Satomura 
(1981) ; (c) the situation we consider. 

4.2. Quantization and laser formula 
We examine the applicability of quantization and the laser formula of Lindzen and 
his colleagues in describing unstable modes in a shallow water. Figures 9 ( a )  and 9 ( b )  
show the unstable situation considered by Satomura (1981). Here, we shall compare 
the growth rates of unstable modes for Case I1 (figure 9 b )  of Satomura (1981) with 
those calculated by the quantization and laser formula for the situation of figure 
9 (c ) .  

The growth rate is estimated from the following equation in terms of the reflection 

(44) 

where r is the time for a wave to propagate from the reflecting wall (y = yb)  to the 
turning surface ( y  = y J ,  

factor R (Lindzen 1988): 
1nR 
27 

kci = - , 

q t 9 .  

gb  cgY 

The condition of quantization is selected as Re [dh'ldy] = 0 a t  the boundary. 
Figure 10 shows the result. The grey lines show the corresponding dispersion 

relations and growth rates of Satomura (1981) and the black lines show the estimates 
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k 
FIGURE 10. Comparison between unstable modes and the quantization and the laser formula. The 
grey lines are from Case I1 of Satomura (1981), and the black lines are the estimates by the 
quantization and the laser formula. (a) Fr = 5.0, ( b )  Fr = 7.0. 

by quantization and the Laser Formula. (In these figures, the modes c, < 1/Fr are 
not shown. These modes are affected by the break point of the flow (figure 9 a ) ,  so we 
cannot compare the dispersion relations and the growth rates of these modes with 
those of the laser formula.) A similar comparison with Satomura’s Case I is also 
possible, although it is a little complicated because of the existence of the two 
reflecting walls. The growth rates of the unstable modes and those of laser formula 
show good agreement. Thus, the unstable modes of Satomura (1981) can be described 
qualitatively with the quantization and laser formula. 

5. Ripa’s theorem and properties of wave propagation 

water: if there exists any value of a such that 
Ripa (1983) derived the following condition for the stability of flows in a shallow 

(a-U)Qy>,O and ( a - U ) 2 < g H  forall y ,  
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FIGURE 11. Ripa’s theorem and properties of wave propagation in Case I of Satomura (1981). The 
shaded areas indicate the evanescent region. ( a )  The stable case (Pr < 2), ( b )  the unstable case 
(Fr 2 2).  

FIGURE 12. Ripa’s theorem and properties of wave propagation in Case I1 of Satomura (1981). The 
shaded areas indicate the evanescent region. ( a )  The case expected to be stable (Fr  < 2), ( b )  the 
unstable case (Fr  2 2).  

then the flow is stable to infinitesimal perturbations. Q is the potential vorticity of 
the basic flow. 

Let us apply this theorem to the cases of Satomura (1981) and interpret his results 
in terms of the properties of wave propagation. Since Qy = 0 in Case I of Satomura 
(1981) (figure 9 a ) ,  the first condition is satisfied automatically. From the second 
condition, we find that the flow is stable for Fr < 2. In  Case I1 (figure 9 b ) ,  since 

condition, and the flow is stable for Fr d 1 from the second condition. 
Recall that as mentioned following (18), the width of the evanescent region near 

the critical levels is 2 /Fr .  In  Case I, when Fr < 2, that is when there is not unstable 
mode, the width of the evanescent region is so wide that waves with the same phase 
speed but with opposite signed &d cannot coexist (figure 11 a) .  On the other hand, 
when Fr > 2, that is when there are unstable modes, the width of the evanescent 
region is narrow enough, and waves with opposite-signed Md can coexist a t  the same 
time (figure 11 b ) .  This is the condition for the occurrence of over-reflection. 

In Case 11, the situation becomes a little complicated. From the properties of 
(divergent) wave propagation, it might be predicted that the flow would be stable for 

Q =-  co at the break point where U = 0, 01 should be negative from the first 
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Fr 6 2 since the condition for over-reflection is not satisfied, as shown in figure 12. 
However, because of the broken profile of the basic flow, Rossby waves exist around 
there, and the flow becomes unstable even when 1 < Fr < 2. In this range of Fr,  there 
is no instability caused by the interaction between divergent shallow-water waves. 

For the linear shear flow, Ripa’s theorem corresponds to the condition that waves 
with Md of the opposite sign can coexist. That is the condition for over-reflection. 

6.  Concluding remarks 
We have studied the relationship between over-reflection solutions and unstable 

modes for a linear shear flow of a shallow-water system. The necessary condition for 
the occurrence of over-reflection of divergent shallow-water waves is that  waves with 
the same phase speed but withMd of the opposite sign can coexist. This corresponds 
to the conditions for vorticity waves summarized by Lindzen (1988) : the critical level 
must exist ; there must be a wave flux sink (wave region) on the opposite side beyond 
the critical level; the waves can reach the critical level. 

The third condition listed above is automatically satisfied because the critical level 
of shallow-water waves is in an evanescent region. We can interpret the unstable 
modes of Satomura (1981) by over-reflection solutions which satisfy the quantization 
condition. The growth rates can be estimated by the laser formula. It was also shown 
that the integral theorem for the stability derived by Ripa (1983) corresponds to  a 
condition which gives the wave geometry for over-reflection. 

The examples of a linear shear flow of shallow water presented in this paper give 
us the simplest illustration of over-reflection. In  the case of Rossby waves (Lindzen 
& Tung 1978) and internal gravity waves (Lindzen & Barker 1985), there is a 
momentum flux jump a t  the critical level, where the wave-mean flow interaction 
occurs, and then the momentum budget becomes complicated. However, in the case 
of shallow-water waves considered here, there is no mean flow acceleration and no 
singularity a t  the critical level. The interpretation in terms of momentum is quite 
simple as described in the foregoing section. 

Lindzen (1988) pointed out the importance of the solution of Orr (1907) with 
regard to the mechanism of over-reflection and instability. In Orr’s solution, 
disturbances are amplified when the wave surface is tiled in the direction opposite to 
the shear, and are reduced when the wave surface is tiled in the direction of the shear. 
He referred to this tendency as the Orr mechanism, and stated that it is the basic 
property of disturbances in a shear flow. In the over-reflection solutions which 
Lindzen and his colleagues have treated, the wave surfaces are tilted in the direction 
opposite to  the shear a t  the critical levels, which coincides with the amplification 
phase of Orr’s solution. Lindzen (1988) proposed that operation of the amplification 
phase of the Orr mechanism a t  the critical level should be the mechanism of over- 
reflection. 

However, the Orr mechanism can only be applied to ‘vorticity waves’. Over- 
reflection of shallow-water waves is not explained by it, because they are ‘divergent 
waves’. I n  fact, according to the WKBJ approximation, wave packets are reduced 
when their wave crests are rotated to be vertical, while wave packets are amplified 
when their crests are rotated to  be horizontal. The steady solution shown in figure 6 
indicates this tendency. This amplifying and decaying behaviour is opposite to that 
of Orr’s solution. 

Lindzen (1988) mentioned that a critical level is essential because it is necessary 
for the Orr mechanism to operate. But, the Orr mechanism does not operate in the 
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over-reflection of shallow-water waves. A critical level exitts simply because waves 
with the same phase speeds, but with opposite-signed Md can coexist, which is 
necessary for the momentum to be conserved. 

The authors wish to thank Ms Tabata for drawing the figures. Some of the figures 
were produced by GFD-Dennou library developed by Drs Shiotani and Sakai. 

Appendix A. Time integration of shallow-water waves in a linear shear 
flow 

following numerical schemes which conserve disturbance momentum : 
For the time integration of linear equations (lo), (12) and (13), we used the 

v;+, -v;-l 
= 0, 

ah; -+ ikU, h; + iku; + 
at 28Y 

-+ikUiq; a d  = 0, qi = ikvi- .;+I- u;-1 +h;. 
at 28Y 

Time integrations are executed with the fourth-order Runge-Kutta scheme. 

Appendix B. Steady over-reflection solutions in a linear shear flow of 
shallow water 

I n  this Appendix we solve the scattering problem in a linear shear flow of a 
shallow-water system. The solution to be obtained is in the form of eik(z-ct). The 
radiation conditions are applied in the transmitted wave region. 

We choose the origin of the y-coordinate a t  the critical level, U - c  = 0. Equatiop 
(14) which is the equation of the Fourier transform of the surface displacement h' 
becomes 

We further transform the y-coordinate to  i j  = ky, and we have 

d2i'  2d i '  ("̂  } A 

djj2 jjdij 
+ k2zJz-l h ' = 0 .  

We find from this that the forms of the solutions are determined by only one 
parameter, F r / k .  

By expanding 2 around ij = 0 as a power series (Satomura 1981), we have the 
following two independent solutions : 

m 

= Anij2n+3, A ,  =+do, A,,, = 
(2n + 5 )  (2n + 2) 

(B 3) 
n-0 

W 

I ;  = EB,ij2n, B, = -Po, B,,, = 
n-0 (2n+2) (Sn- 1)  
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From ( l l ) ,  (12) and (A 3) ,  the Fourier transforms of velocity G', 4' are written as 
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- A  1 a q - i  m k "  
ii' = - g h ' - - -  - - C A,ij2n+4+1 2 (2n+3)  (2n+1)A,i j2",  

4; = - g h ' - - -  = - x Bbnij2n+1+1 

k i aij k,,, Fr n-0 

- A  la;; 1 k "  
4 ( n + i )  (n+2)B,+,ij2"+'. 

k i aij k,=, Fr n-0 

that i', Zi', v"' have no singularities at the critical level, i j  = 0. 
obtain the reflection and transmission factors, we examine the so!ution of 
a t  g - f m  (after Lindzen & Baker 1985). By the transformation h' = Iijlh", 
becomes 

As i j  + f 00, this equation is approximately expressed as 

d2h" Fr2 - 
dij2 k 
-+,ijZh' = 0. 

By the use of the WKBJ approximation, we have the asymptotic solutions as 
i j + + 0 O :  

h"+ = 1Pl-i exp (i & dg) , (B 6) 

where P = (Fr2 /k2)  ij2. In  the above h"+ describes the waves approaching the critical 
level, while c, describes the waves leaving the critical level. 

Let us determine the solution which satisfies the boundary conditions. From the 
radiation condition in the transmitted wave region, we have at i j- .  00 

where &,2  = & 2 / l i j l ,  and a, 
determined by using 

h" ah";+& -Ah"-, (B 8) 

p, A are complex constants. The ratio o f p  to  a can be 

It is actually evaluated at a certain point gobs where the WKBJ approximation is 
valid : 

6 , -  
a 
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Let us determine the amplitudes of the incident, reflection and transmission waves 
in order to evaluate the reflection and transmission factors. At ij + - a, we can 
express the solution by the incident and reflection waves as follows: 

h"' - Bh"+ + CP-. (B 10) 

Differentiating (B 10) with y" and using (B 6 )  and (B 7 ) ,  we get 

By using (B 10) again, we can evaluate the factors B, C from as 

Therefore, the reflection factor is 

In the same manner, we can obtain the factor A of the transmission wave. 

Therefore, the transmission factor T is 

A T = = 

Figure 7 shows the result calculated by choosing gobs at the distance of two 
wavelengths away from the turning surface. 
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